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Edward C. van der Meulen,

M. G. SriRam, and
K. W. Teoh

ABSTRACT

Recent work has shown how to test a simple hypothesis

of uniformity on the interval (0,1) by using estimates of
entropy. In this paper we use Monte Carlo methods to

extend previous tables of critical points and power for

such entropy tests to the large sample sizes likely to )e

desirable when evaluating the output of one or more

random number generators. A comparison with asymptotic

critical points and power is made. The results are used

to evaluate a number of commonly used random number

generators. At least one random number generator judged

"good" by the spectral test (multiplier 5**1 5) is found

unsuitable for use.

* Research supported by Office of Naval Research Contract
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1. INTRODUCTION

An estimator of entropy was proposed by Vasicek

(1976) and studied by Dudewicz and van der Meulen (1979),

who showed how this estimator could be used to test

whether a random sample comes from the uniform distribu-

tion on (0,1) and gave Monte Carlo and asymptotic evalua-

tions of the percentage points of the distribution of the

estimator. In this paper we utilize this test for uni-

formity to evaluate random number generators. A compari-

son of asymptotic with Monte Carlo for percent points and

power is also given.

The differential entropy (or entropy) of a random

variable X with density function f is defined as

H(X) - f f(x) log f(x)dx (1.1)

and has the properties that if X[0,1] w.p. 1 then

H(X) < 0, (1.2)

and among all densities f concentrated on (0,1] the

uniform f0 maximizes H(f) to

H(f0 ) = 0. (1.3)

The following two definitions were given by Dudewicz and

van der Meulen (1979), and use the above.

2i I-



Definition (1.4). Two densities f 1 and f2 are said to be

entropy-distinguishable if H(f I) 1 H(f )

Definition (1.5). A density f* is said to be entropy-

unicue (or e-unigue) in a class 2 of densities if

f* E and I f £ , f $ f*, such that H(f)

By property (1.3), we know that in the class i of

densities on (0,1), f0 is e-unique. This fact will be

central below.

Now let X ... , Xn be a random sample from an

absolutely continuous distribution F with density f and

let X(1 ) .. , (n) be the order statistics. The

estimator of H(f) (Vasicek (1976)) is
n

H n- 1  log{n [X(i+m) X (i-r) (1.6)
M'n 7i i~) (im

where 1 < m < n/2, X(j) = X(I ) for j < 1, and X(j) X(n)

for j > n.

Dudewicz and van der Meulen (1979) proposed a test

for uniformity based on the e-uniqueness of f 0 ' We are

concerned with this test and so describe it here.

Let X1 , ... , Xn be a random sample from an absolutelyin

continuous distribution F with density f concentrated on

[0,1]. Let f0 denote the U(0,1) density. The level a test

rejects H f f in favor of H f $ f if and only ifI-00 A 0

[-3

i r .. .. I



Hm n < Ha (mn) (1.7)

where H *(m,n) is the 100a percentile point of the distri-

bution of H under f0 '

By the e-uniqueness of f0 among all densities con-

centrated on [0,1] and by the consistency of the estimator

(Vasicek (1976)), it follows that the above test is con-

sistent against all alternatives f on [0,1]. Further, in

Dudewicz and van der Meulen (1979) it is shown that if

f is concentrated on [0,1] then, w.p. 1, H, n < 0.

In Dudewicz and van der Meulen (1979), the above test

is studied in detail using both analytical and Monte Carlo

techniques. The latter are necessary since -'-he form of

the distribution of Hm,n appears to be analytically

intractable. From Dudewicz and van der Meulen (1979) we

know

Theorem 1.8. Under H0 , if m o(n11 3- 6 ), 6 > 0, the

quantities

(6mn)i1/2[Hmn - log(2n) + log(n + 1) + Y- R(l, 2m-l)] (1.9)

and

(6mn) 1 /2[H + log(2m) + - R(l, 2m-l)] (1.10)
!. m ,n •

are asymptotically N(0,1) as n -.

4
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Here Y is Euler's constant, y 0.5772... and, for

j . k, R(j, k) = k -  + (k-l)- + ... + 1 Using (1.9)

we then have that

HaC*(m,n) - -()(6mn)-/2 - log(2m) - y + R(1, 2m-1)

il (n+l.- log (P (1.11)

is an asymptotic approximation to the 100a percentile point

of the distribution of Hm, n where *(-) is the standard

normal distribution function.

For asymptotic power, Dudewicz and van der Meulen

(1979) show

Theorem 1.12. For any bounded positive step function

alternative density f1 on (0,1),

n1"2( n ) 1 / 2[H + log(2m) + y - R(1, 2m-1) - H(f1 )]

is asymptotically normal with mean zero and variance

t(2m) + Varf log fl, where
f1

n/ 6 - 1 if k z 1

(2k 2 -2k+l){- - ( 1 + ... + 1
2 (k-i)

if k > 2

Hence an asymptotic approximation to the power of a

level a test under alternative f is
$1

.ii.. -A. . . .. .. ...... .. .__ •.
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1/2 *(M,n) + log(2im) + y -R(1,2m-1) -H(f)J

~(f 1 1(i~zm)VT(2m) + Var f lo g
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2. ONE-SAMPLE EVALUATION BASED ON ASYMPTOTIC PERCENTILE

RANKS

We now use test (1.7) to evaluate whether each of

nine of the uniform random number generators available

in Dudewicz and Ralley (1981) have entropies consistent

with uniformity. At the same time, the form of the

test (1.7) suggeststhat if, for two random number

generators - and 2'

H m,n -l) < Hm, n ("2

then "*2 is "better than" -1" This provides a basis for

comparative evaluation of the random number generators.

Thus we first obtain Hm, n (.-.i) for each of nine of the

random number generators :i in Dudewicz and Ralley (1981):1

RNCG (using IX = 1, Li = 452807053, C = 0.0, PIP =

2.**31), SRAND, KERAND, UNI, RNI, RN2, RN3, RN4 and RNS.

Fixing n = 10,000 and letting m = 1(1)10(5)20(10)40,

comParison between the results obtained by Monte Carlo

methods and by asymptotic methods is one of our goals.

This value of n automatically excluded RN5 from considera-

tion for m < 5 since the period of RNS is only 2048 (=2

hence leading to definite rejection due to gaps of size

zero for small m.

For each of the ' generators, the statistics

Hm,10000 were computed from a single sample of 10,000

7



numbers for 14 values of m (10 for RNS) as above. The

percentile ranks of these statistics, expressed in terms

of their asymptotic distributions under H0 (see equation

(1.10)), were plotted in Figure 1.

Figure 1

Examination of that graph reveals that, among all the

generators considered, RN2, RN4, and KERAND have entropy

estimates most consistent, almost too consistent, with

uniformity, while UNI gives good entropy estimates in the

same sense. The poorest generator is FRNCG, while

the rest performed reasonably well. (To be rejected, the

H n - value of a generator needs to have a percentile

rank < 5.00, at the top of the graph scale.) These

interpretations are based on a single sample of size

10,000 and therefore should be regarded more as an

illustration of use of Hm,n for comparing random number

generators than as a definitive statement regarding them.

More replications are used below in a way reminiscent of

the extensive testing of random number generators reported

in Dudewicz and Ralley (1981).

Since the critical region for the entropy test

involves the lower (left) tail of the null distribution

of H the (asymptotic) cutoff point, say for = .05,

corresponds to the 5% point of the asymptotic null

8A



distribution and is seen to be to the left of most points

in Figure 1. Thus, it is clear from the plots in Figure 1

that all generators under study except RNCG pass this

test of uniformity for all the values of m considered.

(Of course RNS fails for m < 5.)

9
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II

3. CONVERGENCE OF H TO ASYMPTOTIC NULL DISTRIBUTIONSHm,n

Dudewicz and van der Meulen (1979) reported Monte

Carlo percentage points of the null distribution of Hm,n

for 10,000 replications of sizes n = 10(10)50(50)100 each

using the generator UNI (using ISEED = 524287 and JSEED

6543 4 5465). A pilot study showed that extending this to

10,000 replications of size 10,000 each would be feasible

but expensive.

In the same report, the above authors also studied

the normal approximation to the percentage point H *(m,n)

given by (1.11) for a z .05, and a vaviety of m,n up to

n < 100. It was found that the asymptotic cutoffs deviate

by a large amount from the simulated cutoff points, at

least for n < 100.

In this report we continue the investigations of the

above authors and investigate the normal approximation to

percentage points for n = 10,000. For this we first

obtain estimates of the true percentage points based on a

Monte Carlo study using 1,000 samples of size 10,000. The

resulting Monte Carlo estimates are given in Table 1, for

various levels of c(a = .40, .30, .20, .10, .05, .01) and

m = 1(1)10(5)20(10)40. We also obtained the corresponding

asymptotic values of Ha*(m,n), for n 1 10,000 and the same

values of a and m. These asymptotic values are listed in

10
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Table 1, together with the Monte Carlo estimates, and it

is seen that - for such a large sample size as n 10,000 -

the asymptotic cutoffs are - for m up to 10 - in close

agreement with the simulated ones using UNI, and based on

1000 replications.

Table 1

In addition to the above we plotted the asymptotic

distributions of the Hmn - statistics for n = 10,000 and

m = 1(1)10(5)20(10)50 , 250 in Figures 2a-2p. This

asymptotic distribution is, for n , m = o(n 3-), and

6 > 0, given in an explicit form by (cf. 1.10)

j(-log(2m) - Y + R(l, 2m-l), ), (3.1)

6n

where ((1,a2) denotes a normal distribution with mean p

and variance 02. In each figure the asymptotic distribu-

tion function of Hm,n is overlayed with the corresponding

simulated percentage points of Hm,n obtained from the

Monte Carlo study described above for a = .005, .010,

.025, .050, .100, .200, .300, .400. It is seen from these

figures that the normal approximation to the simulated

values is good for all m-values up to 4, bad beyond 10,

and questionable in the range inbetween. The goodness

depends on the use to which the approximation is to be

put. For the use in Section 5 below it is bad in the

i 11



range m > 4. (From the restriction on m one expects good-

ness at best for m < nI1/ 3 % 22.)

FIGURES
2a-2p

The fact that the normal approximation to the distri-
bution of H deteriorates for n = 10,000 as m > 10, as

m ,n

observed from Figures 2a-2p, also has a bearing on the

study reported in Section 2. There, for one sample of

size n = 10,000 the percentile ranks of the observed values

of H with respect to the asymptotic distributions are
m , n

plotted for nine random number generators as functions of

m. Strictly speaking, this approximation is not justified

for values of m > n1/3 % 22 on the basis of Theorem 1.8.

The figures 2a-2p indicate that the asymptotic distribution

moves more and more to the right of the percentile points

obtained through simulation as m increases, m > 15, i.e.

the asymptotic distribution is more and more significantly

stochastically larger than the actual (-imulated) distri-

bution. From this it can be surmised that for m > 15 the

actual percentile ranks of the observed Hm,n - values in the

study leading to Figurp 1 are larger than the ones plotted

there, which are based on the asymptotic distribution, and

that the discrepancies get larger as m increases. This may

explain the general upward trend in Figure 1 of the graphs

12 1i



as m increases beyond 15; the actual percentile ranks are

larger than the plotted ones for m > 15, which, when

corrected for, would yield a more horizontal behavior of

the percentile rank curves for m > 15 for the random

number generators under consideration.

1i

!! 13

LU 'r i... ... vn -- ,,L



* ! - r_ . . .*

4. CONVERGENCE OF H TO ASYMPTOTIC ALTERNATIVE

DISTRIBUTIONS

Expression (1.13) for the asymptotic power of the

test against alternatives which are bounded positive step

functions on [0,1] was used by Dudewicz and van der

Meulen (1979) to compute an approximation to the power for

nine alternative distirbutions for n = 20, m = 1, 2, 4,

9 and a z .05. Some of these alternative distributions

belong to the class " of bounded positive step functions,

others do not. As a general conclusion, the above authors

found that the asymptotic power approximation agreed

poorly with the Monte Carlo power evaluations for the

values of n, m, and a considered. These investigations

were continued for n = 100 and it was found that the

normal approximation is still not accurate.

In this paper we extend the evaluation of the normal

approximation to power for a particular alternative (called

F in Dudewicz and van der Meulen (1979)) for n = 100,

1000, and 10,000 and a = .05. This alternative which,

belongs to Y, is defined by the following distribution

function:

1'4



F: F(x) = x if 0 < x < 1/4-c/2,

Fx) = 6(l/4-E/2)+x(1-6), if 1/4-e/2 < x < 1/4 + E/2,

F(x) = x-E6, if 1/4 + e/2 < x < 3/4 - c/2,

F(x) = -6(3/4+E/2)+x(1+5), if 3/4-E/2 < x < 3/4 + 072,

F(x) = x, if 3/4 + E/2 < x < 1,

(with 0 < £ < 0.5, 0 < 6 < 1; we used E = .02, 6 = 0.1).

In order to carry out the asymptotic power evaluation

for alternative F we first need the cutoff points H *(m,n)

of our test procedure (1.7) for various values of a, m, n,

and, moreover, Monte Carlo estimates of the power to compare

the asymptotic approximation with. Monte Carlo estimates

of H *(m,n) for n = 100 and various values of a and m are

given in Dudewicz and van der Meulen (1979). Monte Carlo

estimates of H a*(m,n) for n = 1000 (based on N = 10,000

replications, and for m = l(1)10(5)20(l0)50, 250) and

for n = 10,000 (based on N 1 1000 replications, and for

m = 1(1)10(5)20(10)50, 250, 500, 2500) are given

in Table 2 and Table 3 respectively for a .005, .01,

.025, .05, .0, .20, .30, 40.

Table 2
Table 3

Monte Carlo estimates for the power of the entropy-

based test against alternative F for n - 100, 1000, and

ji 15
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10,000 (based on 10,000, 10,000, and 1000 replications

respectively) are given in Table 4 for a .05 and

m = l(l)l0(5)20(L0)40, together with the asymptotic power

calculated in each case using formula (1.13). Both the

Monte Carlo estimates ("simulated power") and the

asymptotic power are obtained using the Monte Carlo

estimates of H *(m,n) ("simulated cutoffs") described

above.

In calculating the asymptotic power note that - for
the density o of F - 1 -.000002, Var log fl1)M

-.000003842, and y .5772...

It is seen from Table 4 that there is reasonable

agreement for n = 10,000 (and 1 < m < 3), but for n = 100

and n 1,000 there seems to be poor agreement overall,

except for m 1 at n = 1,000.

Table 4



S. EVALUATION OF NINE RANDOM NUMBER GENERATORS BASED

ON A X 2-TEST

In Section 2 we presented a one-sample evaluation of

nine random number generators based on the percentile

ranks of the observed H -values within the asymptoticm ,n

distribution.

2_
As a more sensitive approach we ran a X2-test using

N = 100 sample-values of H (n = 10,000; m = 1(1)4)

from the same nine (without RN5) random number generators

to determine whether the distributions of H fit thein

corresponding asymptotic distributions which, for m < 4,

have been verified in Section 3 as being very close to the

true distributions. The results are given in Table S.

I Table 5

For carrying out the X2-test for goodness of fit we

used 10 equi-probable cells. The null-hypothesis enter-

tained in each case is that the 100 sample values of

Hm'n come from the asymptotic normal distribution given

by (3.1). The entries in Table 5 are the observed

x 2values for the eight random number generators and

four values of m. Those X2values which are significant

at the .05 level are starred.

17



From the observed X2-values we conclude that seven

random number generators produce numbers which are con-

sistent with the hypothesis of randomness as measured by

the Chi-squareentropy-test, whereas one random number

generator (RN3) is to be rejected due to the lack of

proper distribution of the Hmn - statistic on the basis of

samples of size n 10,000.

i
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6. CONCLUSIONS

In this paper we looked at the performance of nine

random number generators in terms of the entropy-based

test statistic H- n * A one-sample evaluation of size

n = 10,000 indicated that all (except two) random number

generators easily pass the entropy-based test, but it

also showed that among the various generators some are

closer to the uniform distribution than others as

measured by the value of Hm n. One random number generator

was excluded from further study since its small period

leads to rejection at every level.

The study of the convergence of Hm, n to the asymptotic

null distribution (initiated in Dudewicz and van der

Meulen (1979) for sample sizes up to n = 100, and continued

here for n = 10,000) revealed that for n = 10,000 and

m < 10 the normal approximation to the percentage points

(and thus to the distribution of H n) is good. This

comparison was carried out in two ways: i) by a

[ comparison of simulated cutoff points with those found

through the asymptotic formula (1.11),and (ii) by a plot

of the asymptotic normal distribution of H with the

o 9,n
[ 19
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simulated values drawn into it. The latter study confirmed

the first one.

Next we investigated the convergence of Hm,n to the

asymptotic alternative distribution under a specific

alternative F which, because it is so -lose to uniform,

is hard to detect. We observed that the simulated power

of the entropy-based test is small for n = 10,000 but for

some m's definitely larger than the significance level.

We noticed that the asymptotic approximation to power for

n = 10,000 as given by formula (1.13) has validity only for

m < 3. In the course of these investigations we obtained

Monte Carlo estimates of the percentage points for n = 1,000

and n = 10,000 which supplement the tables already provided

in Dudewicz and van der Meulen (1979).

Finally we evaluated the eight remaining random number

generators on basis of a X2 -test. The purpose of this test

was to investigate whether the true distribution of Hm ,n

fitted the asymptotic null distributions closely, which we

know from the results in Section 3 they should for m = 1,

2, 3, 4 if the generators are truely random. On basis of

this study the random number generator RN3 was rejected.

20
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Figures__2a-2p. The asymptotic distribution function of H for n=10, 000 and
:n,n

nv-l(l)10(5)20(l0)50,250; * represents a Monte Carlo value at
a-.005,.01, .025, .05,.10, .20, .30, .40.

Figure 2a.

N= 10000

M= 1

STRI ~10-'
-. 98 -2.88 -2.80 -2.72 -2. 64 -2.56 -29A48

CO

0

0l
C;

-.6 -2.88 -'2.8 S2.72 -12. 6 4 -2.56 -2.4t8
STRT N10'

23



Figure 2b.
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Figure 2d.
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Figure 2e.
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N= 10000

M= 6

STRT x 10-'
-0.52 -0.418 -. 44 -0.140 -0.36 -0.32 02

C0

0

-J
C0

CC

-0.52 -0.48 -0.44 -b.'40 -0.36 ~ 0?e
STAT 1i01

28L



Figure2g
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Figure 2h.
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Figure 2i.
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Figure 2j.
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Figure 2m~.
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Figure 22.
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Table 5

UNI KERAND RNCG RN1 RN3
RN2 SRAND

in RN4

1 6.0000 11.00 16.40O 12.20 7.40

2 4.8000 6.40 10.20 10.60 10.60

3 5.6000 6.00 6.60 8.00 11.60

4 14.4000 8.00 7.60 10.40 19.20*
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